Fiber-Fiber ${ }^{T M}$ Optical Switch 1x1, Dual 1x1, 1x2

(SM, PM, MM, Broadband, Bidirectional, <0.5ms Fast Switching)

	DATASHEET	Bur now Pm

Features

- Ultra Low Loss ~0.2dB
- Ultra Broadband
- Little Wavelength Dependence
- Little Temperature Dependence
- Fast $<0.5 \mathrm{~ms}$
- Vibration Insensitive

Applications

- Laser Systems
- Reconfigurable Optics
- Instrumentations

The FF Series fiber optic switch provides exceptional performances of nearly lossless transition, ultra-broadband with little wavelength dependence that is only limited by fiber characters, fast optical switching of less than ms, little temperature dependence, large on/off ratio, vibration insensitive as well as low cost. It connects optical channels by fiber-to-fiber direct coupling using a silicon-based micro-mechanical auto-alignment platform that is wafer-level produced in-house. The established optical path has no air gap, using no lens or coating, eliminating unwanted surface reflection-related issues. The platform is robust and insensitive to temperature and vibration. The FF Series switch can accommodate all types of fibers with 0.125 mm outer diameter, including SM. MM, PM, double cladding, bendable, large core, small core. The FF switches uniquely provide performance no other technologies can match.
The FF switches are activated via an electrical relay. The latching operation preserves the selected optical path after removing the electrical power. The switch is bidirectional and conveniently controllable by 4.5 V .

Specifications

Parameter	Min	Typical	Max	Unit
Wavelength	350		5500	nm
Insertion Loss ${ }^{[1]}$	0.01	0.2	0.4	dB
Wavelength Dependent Loss			0.01	dB
Polarization Dependent Loss			0.05	dB
Polarization Extinction Ratio (PM)	18	25	35	dB
Retur	50 (SM)			dB
	35 (MM) ${ }^{[3]}$			dB
Cross Talk	50		75	dB
Optical Rise/Fall Time (slow MEMS) ${ }^{[2]}$	5		20	ms
Optical Rise/Fall Time (fast MEMS) ${ }^{[2]}$	0.2	0.4	0.8	ms
Repetition Rate (slow MEMS)			1	Hz
Repetition Rate (fast MEMS)			5	Hz
Repeatability			± 0.02	dB
Durability	10^{8}			cycles
Operating Optical Power ${ }^{[3]}$		0.3	0.5	W
Operating Voltage	4.3		4.5	VDC
Operating Current		30	60	mA
Switching Type	Latching / Non-Latching			
Operating Temperature	-40		80	${ }^{\circ} \mathrm{C}$
Storage Temperature	-50		90	${ }^{\circ} \mathrm{C}$

Notes:

[1]. SM 28 Fiber, Typical loss is 0.3 dB . Ultra-low loss 0.1 is special order. Excluding Connectors. For small core fibers the specs are reduced. For IR fluoride fiber loss increase.
[2].Define as $10 / 90 \%$ optical signal change. Slow MEMS chip can use all fiber types. Fast MEMS chip can only use SM fibers and PM1550. It can be used for other PM fiber but need NRE charge which is suitable for volume orders.
[3].For 1310/1550nm. The optical power handling rapidly reduces as fiber core size/ reduces. At 650 nm the \max is 2 mW . Expanding the fiber core can increase the power handling.

[^0]
Fiber-Fiber ${ }^{T M}$ Optical Switch
 1x1, Dual 1x1, 1x2

(SM, PM, MM, Broadband, Bidirectional)

DATASHEET

Mechanical Dimensions For Slow Version (S) (square shape, PM fiber) (Unit: mm)

Mechanical Dimensions For Fast Version (F) (T-shape, SM. MM Fibers) (Unit: mm)

F

Fiber-Fiber ${ }^{T M}$ Optical Switch
 1x1, Dual 1x1, 1x2

(SM, PM, MM, Broadband, Bidirectional)

DATASHEET

Typical Response Speed (SM, Package S)

Optical Response Speed (SM Package F)

Channel 1 Optical Rise and Fall

Channel 2 Optical Rise and Fall

Fiber-Fiber ${ }^{T M}$ Optical Switch
 1x1, Dual 1x1, 1x2

(SM, PM, MM, Broadband, Bidirectional)

DATASHEET

Typical Response Speed (SM Package F)

Channel 1 Optical Rise and Fall

Channel 2 Optical Rise and Fall

Electrical Connector Configurations

Important Note: The device must be driven by the reference circuit. Otherwise, it is not stable. This is because the device contains a permanent magnet inside; thus current must flow in the correct direction to counter the magnet field.

The load is a resistive coil which is activated by applying 4.5 V (draw $\sim 40 \mathrm{~mA}$). The latching switches can also be driven by a pulse mode for energy saving. The switch can withstand 5 V which may reduces its durability.
Agiltron offers a computer control kit with TTL and USB interfaces and Windows ${ }^{T M}$ GUI. We also offer RS232 interface as an option.

Latching Type

The activation requires a 4.5 V pulse with a duration $>15 \mathrm{~ms}$

Optical Path	Electric Drive	
	Pin 2	Pin 3
Port 1 \rightarrow Port 2	4.5 V	0 V
Port 1 \rightarrow Port 3	0 V	4.5 V

Non-Latching Type

Optical Path	Electric Drive	
	Pin 2	Pin 3
Port 1 \rightarrow Port 2	0 V	0 V
Port 1 \rightarrow Port 3	0 V	4.5 V

Fiber-Fiber ${ }^{T M}$ Optical Switch
 1x1, Dual 1x1, 1x2

(SM, PM, MM, Broadband, Bidirectional)

DATASHEET

Functional Diagram

Ordering Information

	$\square \square$	\square	\square	$\square \square$	\square	\square	\square
Prefix	Type	Package ${ }^{[2]}$	Test Wavelength ${ }^{[3]}$	Fiber Type	Fiber Cover	Fiber Length	Connector
FFSW-	$\begin{aligned} & 1 \times 1 \text { (Transparent) }{ }^{[1]}=11 \\ & 1 \times 1 \text { (Opaque) }=1 \mathrm{D} \\ & 1 \times 1 \text { (Ultralow Loss) }=\mathrm{U} 1 \\ & 1 \times 2=12 \\ & 1 \times 2 \text { (Ultralow Loss) }=\mathrm{U} 2 \\ & 1 \times 1 \text { High Power } \\ & 1 \times 2 \text { High Power }^{[4]}=\mathrm{T} \text { (trans) }=\mathrm{T} 1 \end{aligned}$	$\begin{aligned} & \text { Fast Latching }(F)=6 \\ & \text { Fast Non-Latching }(F)=7 \\ & \text { Slow Latching }(S)=2 \\ & \text { Slow Non-Latching }(S)=3 \end{aligned}$	$\begin{aligned} & 488 \mathrm{~nm}=4 \\ & 360 \mathrm{~nm}=A \\ & 430 \mathrm{~nm}=B \\ & 532 \mathrm{~nm}=5 \\ & 630 \mathrm{~nm}=6 \\ & 780 \mathrm{~nm}=7 \\ & 850 \mathrm{~nm}=8 \\ & 980 \mathrm{~nm}=9 \\ & 1060 \mathrm{~nm}=1 \\ & 1310 \mathrm{~nm}=3 \\ & 1550 \mathrm{~nm}=C \\ & 2000 \mathrm{~nm}=2 \\ & 2.3-4 \mu \mathrm{~m}=\mathrm{F} \\ & 3.3-5.5 \mu \mathrm{~m}=\mathrm{G} \end{aligned}$	Pick from below table to match the wavelength range	$\begin{aligned} & \text { Bare fiber }=1 \\ & 900 \text { um tube }=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & 0.25 m=1 \\ & 0.5 m=2 \\ & 1.0 m=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { None }=1 \\ & \text { FC/PC }=2 \\ & \text { FC/APC }=3 \\ & \text { SC/PC }=4 \\ & \text { SC/APC }=5 \\ & \text { ST/PC }=6 \\ & \text { LC/PC }=7 \\ & \text { Duplex LC/PC }=8 \\ & \text { MTP }=9 \\ & \text { LC/UPC }=U \\ & \text { Special }=0 \end{aligned}$

[1]. Transparent means light passes without activation. Opaque means light is blocked at the nonactivation state.
[2]. Slow MEMS chip is cost effective for PM fiber. Fast MEMS chip is suited for all SM/MM fibers, and only available for PM1550. It can be used for other PM fiber but requires a NRE charge which is suitable for volume orders.
[3]. The device is ultra-broadband limited by fiber transmission. We only test at one selected wavelength. If a customer needs to test at several wavelengths, the selection is special $=0$ with added cost. Our experience indicates no such need unless a special wavelength.
[4]. The beam size is expanded about 5 X inside the fiber tip
Red means special order
NOTE:
D PM1550 fiber works well for 1310nm and the short fiber in the switch does not affect system performance. PM1550 can be spliced with PM1310
Fiber Type Selection Table:

01	SMF-28	34	PM1550	71	MM 50/125 $\mu \mathrm{m}$
02	SMF-28e	35	PM1950	72	MM 62.5 $\mu \mathrm{m}$
03	Corning XB	36	PM1310	73	$\mathbf{1 0 5 / 1 2 5 \mu m}$
04	SM450	37	PM400	74	FG105LCA
05	SM1950	38	PM480	75	FG50LGA
06	SM600	39	PM630	76	STP 50/125
07	Hi780	40	PM850	77	IRZS23
08	SM800	41	PM980	78	IRFS32
09	SM980	42	PM780		
10	Hi1060	43			
11	SM400	44	PM405		
12		45	PM460		
13		46			

Fiber-Fiber ${ }^{T M}$ Optical Switch
 1x1, Dual 1x1, 1x2

(SM, PM, MM, Broadband, Bidirectional)

DATASHEET

Application Notes

Fiber Core Alignment

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

Fiber Cleanliness

Fibers with smaller core diameters ($<5 \mu \mathrm{~m}$) must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550 nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650 nm . We produce a special version to increase the how handling by expanding the core side at the fiber ends.

Fiber-Fiber ${ }^{T M}$ Optical Switch
 1x1, Dual 1x1, 1x2

(SM, PM, MM, Broadband, Bidirectional)

DATASHEET

Driver Reference Design

Optical Power Handling vs Wavelength For Single-Mode Fibers

[^0]: Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.
 Rev 12/07/23

